RESEARCH PROGRESS REPORT SUMMARY

Grant 02287: Enhanced Testing for the Diagnosis of Bartonellosis in Dogs

Principal Investigator: Edward Breitschwerdt, DVM
Research Institution: North Carolina State University
Grant Amount: $103,013.00
Start Date: 8/1/2016 End Date: 12/31/2018
Progress Report: FINAL
Report Due: 12/31/2018 Report Received: 1/31/2019

(The content of this report is not confidential and may be used in communications with your organization.)

Original Project Description:

Bartonellosis, a zoonotic bacterial disease of worldwide distribution, is caused by approximately 10 different Bartonella species. Bartonella are transmitted to canines and humans by ticks, fleas, lice, mites, and sand flies. Dr. Breitschwerdt’s laboratory demonstrated the first evidence for Bartonella infections in dogs in 1993. Bartonella species have been associated with an expanding spectrum of important disease manifestations including anemia, endocarditis, hepatitis, lymphadenitis, myocarditis, thrombocytopenia and vascular tumor-like lesions. Infections can be life-threatening. Due to a lack of sensitive and reliable diagnostic assays, definitive diagnosis of bartonellosis in dogs remains a significant problem. Because these bacteria invade cells and infect tissues throughout the body, this chronic intracellular infection is difficult to cure with currently used antibiotic regimens. This study will develop improved serodiagnostic tests for bartonellosis in dogs. These assays can also be used for world-wide sero-epidemiological prevalence studies, and to establish early and accurate diagnosis. Dr. Breitschwerdt’s research group has described concurrent infection in dogs, their owners and veterinary workers; this allows for a One Health approach to this important emerging infectious disease.

Publications:

Presentations:

Report to Grant Sponsor from Investigator:

This AKC-CHF funded research has resulted in substantial refinement of our Bartonella serodiagnostic testing knowledge of healthy dogs (pets, working dogs and potential blood donors) and sick dogs being evaluated for a differential diagnosis of Bartonellosis. Based upon testing and comparing results using eight different Bartonella species or strains, we were able to identify two species that when used in combination should increase serodiagnostic sensitivity compared to the three strains that we have used diagnostically for the past decade. As these are not the two species currently in use diagnostically, our historical testing most likely underestimated the prevalence of Bartonella antibodies in seroepidemiological studies published by our research group and more importantly failed to report positive Bartonella spp. serological results that could be used to guide therapy in a sick dog. In both our research and diagnostic laboratory testing, we have always adhered to the adage: The kindest form of therapy is an accurate diagnosis. This study also allowed us to begin to assess the utility of another serodiagnostic technique called Western immunoblotting for assessment of a dog’s exposure to a Bartonella spp. WB interpretation can be challenging and this study has allowed us to compare IFA and WB sensitivities and to define minimal criteria for reporting a “positive” WB. Our efforts to date have identified individual and potential combinations of small Bartonella proteins (peptides) that appear to have diagnostic utility as an inhouse rapid assay that could be used by veterinarians to rapidly determine if a dog has been exposed to a Bartonella spp. We are currently purifying individual proteins and assessing other peptide combinations in an effort to define an assay with optimal sensitivity and specificity. This brief paragraph does not do justice to the numerous hours of research effort that was made possible because of the research funding support from the American Kennel Club Canine Health Foundation or the dogs and their owners who will ultimate benefit from these findings, as we improve serodiagnosis of bartonellosis.